Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size.

Which correctly compares the de Broglie wavelength λ_{e} of the electrons with the de Broglie wavelength λ_{p} of the protons and the width of the diffraction patterns that are produced by these beams?

	comparison of de Broglie wavelength	diffraction pattern	
A	$\lambda_{e}>\lambda_{p}$	electron beam width > proton beam width	\square
B	$\lambda_{e}<\lambda_{p}$	electron beam width > proton beam width	\square
C	$\lambda_{e}>\lambda_{\mathrm{p}}$	electron beam width < proton beam width	\square
D	$\lambda_{e}<\lambda_{\mathrm{p}}$	electron beam width < proton beam width	\square

(Total 1 mark)

Q2.A diffraction pattern is formed by passing monochromatic light through a single slit. If the width of the single slit is reduced, which of the following is true?

	Width of central maximum	Intensity of central maximum	
A	unchanged	decreases	\square
B	increases	increases	\square
C	increases	decreases	\square
D	decreases	decreases	\square

(Total 1 mark)

Q3.A light source emits light which is a mixture of two wavelength, λ_{1} and λ_{2}. When the light is incident on a diffraction grating it is found that the fifth order of light of wavelength λ_{1} occurs at the same angle as the fourth order for light of wavelength λ_{2}. If λ_{1} is 480 nm what is λ_{2} ?

(Total 1 mark)

Q4. When comparing X-rays with UV radiation, which statement is correct?

A X-rays have a lower frequency.
B \quad X-rays travel faster in a vacuum.

C X-rays do not show diffraction and interference effects.

D Using the same element, photoelectrons emitted using X-rays have the greater maximum kinetic energy.
(Total 1 mark)

Q5.Monochromatic light may be characterised by its speed, frequency and wavelength. Which of the following quantities change when monochromatic light passes from air into glass?

A Speed only.

B Speed and wavelength only.

C Speed and frequency only.

D Wavelength and frequency only.

(Total 1 mark)

Page 3

Q6. Monochromatic light of wavelength 490 nm falls normally on a diffraction grating that has 6×10^{5} lines per metre. Which one of the following is correct?

A The first order is observed at angle of diffraction of 17°.

B The second order is observed at angle of diffraction of 34°.
C The third and higher orders are not produced.
D A grating with more lines per metre could produce more orders.

(Total 1 mark)

QT.

In a double slit system used to produce interference fringes, the separation of the slits is S and the width of each slit is x. L is a source of monochromatic light. Which one of the following changes would decrease the separation of the fringes seen on the screen?

A moving the screen closer to the double slits

B decreasing the width, x, of each slit, but keeping S constant

C decreasing the separation, s, of the slits

D exchanging L for a monochromatic source of longer wavelength
(Total 1 mark)

Q8.

The diagram above shows the first four diffraction orders each side of the zero order when a beam of monochromatic light is incident normally on a diffraction grating of slit separation d. All the angles of diffraction are small. Which one of the patterns, \mathbf{A} to \mathbf{D}, drawn on the same scale, is obtained when the grating is exchanged for one with a slit separation $\frac{d}{2}$?

A

B

C

Q9.Interference maxima produced by a double source are observed at a distance of 1.0 m from the sources. In which one of the following cases are the maxima closest together?

A red light of wavelength 700 nm from sources 4.0 mm apart
B sound waves of wavelength 20 mm from sources 50 mm apart
C blue light of wavelength 450 nm from sources 2.0 mm apart
D surface water waves of wavelength 10 mm from sources 200 mm apart
(Total 1 mark)

Q10. Light of wavelength λ is incident normally on a diffraction grating for which adjacent lines are a distance $3 \boldsymbol{\lambda}$ apart. What is the angle between the second order maximum and the straight-through position?

A 9.6°
B $\quad 20^{\circ}$
C 42°
D There is no second order maximum.
(Total 1 mark)

Q11.The diagram shows a microwave transmitter T which directs microwaves of wavelength eat two slits S_{1} and S_{2} formed by metal plates. The microwaves that pass through the two slits are detected by a receiver.

receiver
at 0

When the receiver is moved to P from O, which is equidistant from S_{1} and S_{2}, the signal received decreases from a maximum to a minimum. Which one of the following statements is a correct deduction from this observation?

A The path difference $\mathrm{S}_{1} \mathrm{O}-\mathrm{S}_{2} \mathrm{O}=0.5 \lambda$
B The path difference $\mathrm{S}_{2} \mathrm{O}-\mathrm{S}_{2} \mathrm{O}=\boldsymbol{\lambda}$
C The path difference $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=0.5 \lambda$
D The path difference $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=\boldsymbol{\lambda}$

Q12.

Point sources of sound of the same frequency are placed at S_{1} and S_{2}. When a sound detector is slowly moved along the line $P Q$, consecutive maxima of sound intensity are detected at W and Y and consecutive minima at X and Z. Which one of the following is a correct expression for the wavelength of the sound?

A $\quad \mathrm{S}_{1} \mathrm{X}-\mathrm{S}_{1} \mathrm{~W}$

B $\quad S_{1} Y-S_{1} X$

C $\quad S_{1} X-S_{2} X$

D $\quad S_{1} Y-S_{2} Y$
(Total 1 mark)

Q13.In a Young's double slit interference experiment, monochromatic light placed behind a single slit illuminates two narrow slits and the interference pattern is observed on a screen placed some distance away from the slits. Which one of the following decreases the separation of the fringes?

A increasing the width of the single slit

B decreasing the separation of the double slits

C increasing the distance between the double slits and the screen
D using monochromatic light of higher frequency
(Total 1 mark)

Q14.Light of wavelength $\boldsymbol{\lambda}$ is incident normally on a diffraction grating of slit separation $4 \boldsymbol{\lambda}$. What is the angle between the second order maximum and third order maximum?

A $\quad 14.5^{\circ}$
B 18.6°
C 48.6°
D $\quad 71.4^{\circ}$
(Total 1 mark)

Q15. Interference fringes, produced by monochromatic light, are viewed on a screen placed a distance D from a double slit system with slit separation s. The distance between the centres of two adjacent fringes (the fringe separation) is w. If both s and D are doubled, what will be the new fringe separation?

A $\frac{w}{4}$

B w
C $2 w$

D $4 w$
(Total 1 mark)

Q16.A narrow beam of monochromatic light falls on a diffraction grating at normal incidence. The second order diffracted beam makes an angle of 45° with the grating. What is the highest order visible with this grating at this wavelength?

A 2
B 3
C 4
D 5

Q17.

Coherent monochromatic light of wavelength λ emerges from the slits X and Y to form dark fringes at P, Q, R and S in a double slit apparatus. Which one of the following statements is true?

A When the distance D is increased, the separation of the fringes increases.

B When the distance between X and Y is increased, the separation of the fringes increases.

C When the width of the slit T is decreased, the separation of the fringes decreases.

D There is a dark fringe at P because $(Y P-X P)$ is 2λ.
(Total 1 mark)

Q18.Monochromatic light of wavelength 590 nm is incident normally on a plane diffraction grating having 4×10^{5} lines m^{-1}. An interference pattern is produced. What is the highest order visible in this interference pattern?

A 2

B 3

C 4

D 5
(Total 1 mark)

Q19.In a double slit interference arrangement the fringe spacing is w when the wavelength of the radiation is λ, the distance between the double slits is S and the distance between the slits and the plane of the observed fringes is D. In which one of the following cases would the fringe spacing also be w ?

	wave length	distance between slits	distance between slits and fringes
A	2λ	$2 s$	$2 D$
B	2λ	$4 s$	$2 D$
C	2λ	$2 s$	$4 D$
D	4λ	$2 s$	$2 D$

(Total 1 mark)

Q20.Using a diffraction grating with monochromatic light of wavelength 500 nm incident normally, a student found the 2nd order diffracted maxima in a direction at 30° to the central bright fringe. What is the number of lines per metre on the grating?

A 2×10^{4}
B 2×10^{5}
C 4×10^{5}
D 5×10^{5}
(Total 1 mark)

Q21.

A double slit interference experiment is performed using monochromatic light of wavelength λ. The centre of the observed pattern is a bright fringe. What is the path difference between two waves which interfere to give the third dark fringe from the centre?

A 0.5λ

B 1.5λ

C 2.5λ
D $\quad 3.5 \lambda$
(Total 1 mark)

Q22.In a Young's double slits interference arrangement the fringe separation is S when the wavelength of the radiation is λ, the slit separation W and the distance between the slits and the plane of the observed fringes D. In which one of the following cases would the fringe separation also be s ?

	wavelength	slit separation	distance between slits and fringes
A	2λ	2ω	$2 D$
B	2λ	4ω	$2 D$
C	2λ	2ω	$4 D$
D	4λ	2ω	$2 D$

(Total 1 mark)

Q23. Figures $\mathbf{1}$ and $\mathbf{2}$ each show a ray of light incident on a water-air boundary. $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} show ray directions at the interface.

Figure 1

Figure 2
(a) Circle the letter below that corresponds to a direction in which a ray cannot occur.
A
B
C
D
(b) Circle the letter below that corresponds to the direction of the faintest ray.
A
B
C
D

Q24. Young's two slit interference pattern with red light of wavelength $7.0 \times 10^{-7} \mathrm{~m}$ gives a fringe separation of 2.0 mm .

What separation, in mm , would be observed at the same place using blue light of wavelength $45 \times 10^{-7} \mathrm{~m}$?

A 0.65
B 1.3
C 2.6
D 3.1
(Total 1 mark)

Q25.The diagram represents the experimental arrangement used to produce interference fringes in Young's double slit experiment.

The spacing of the fringes on the screen will increase if

A the width of the single slit is increased
B the distance $\mathbf{X Y}$ between the two slits is increased
C a light source of lower frequency is used
D the distance between the single and double slits is decreased

